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Japanese traditional dietary fungus 
koji Aspergillus oryzae functions as a prebiotic 
for Blautia coccoides through glycosylceramide: 
Japanese dietary fungus koji is a new prebiotic
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Abstract 

Background:  The Japanese traditional cuisine, Washoku, considered to be responsible for increased longevity 
among the Japanese, comprises various foods fermented with the non-pathogenic fungus Aspergillus oryzae (koji). We 
have recently revealed that koji contains an abundant amount of glycosylceramide. Intestinal microbes have signifi-
cant effect on health. However, the effects of koji glycosylceramide on intestinal microbes have not been studied.

Materials and methods:  Glycosylceramide was extracted and purified from koji. C57BL/6N mice were fed a diet 
containing 1 % purified koji glycosylceramide for 1 week. Nutritional parameters and faecal lipid constituents were 
analyzed. The intestinal microbial flora of mice on this diet was investigated.

Results:  Ingested koji glycosylceramide was neither digested by intestinal enzymes nor was it detected in the faeces, 
suggesting that koji glycosylceramide was digested by the intestinal microbial flora. Intestinal microbial flora that 
digested koji glycosylceramide had an increased ratio of Blautia coccoides. Stimulation of B. coccoides growth by pure 
koji glycosylceramide was confirmed in vitro.

Conclusions:  Koji functions as a prebiotic for B. coccoides through glycosylceramide. Since there are many reports of 
the effects of B. coccoides on health, an increase in intestinal B. coccoides by koji glycosylceramide might be the con-
nection between Japanese cuisine, intestinal microbial flora, and longevity.
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Background
The Japanese traditional cuisine Washoku was recently 
registered by UNESCO as an intangible cultural herit-
age (United Nations Educational, Scientific and Cultural 
Organization 2013). A number of mechanisms linking 
Japanese cuisine to its health effects have been proposed, 
such as the preponderance of low saturated fatty acids, 
high fibre, and omega-3 polyunsaturated fatty acids. 

However, some unknown factors besides nutritional 
components such as protein, fat, carbohydrate balance, 
or dietary fibre are considered to influence the longev-
ity of the Japanese (Yamamoto et  al. 2016); a concrete 
mechanism linking Japanese cuisine and its health effects 
remains to be elucidated.

One common characteristic of Japanese cuisine is that 
it contains various and abundant fermented foods. Most 
Japanese fermented foods contain koji (rice fermented 
with the non-pathogenic fungus Aspergillus oryzae or 
A. luchuensis (Machida et  al. 2005)) as the saccharify-
ing agent of the starch contained in crops (Kitagaki and 
Kitamoto 2013). These include miso (soybean and bar-
ley fermented with koji), shoyu (soy sauce), amazake 
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(rice koji beverage), osu (rice vinegar), kurosu (black 
rice vinegar), sake (alcoholic beverage fermented with 
koji), and shochu (distilled alcoholic beverage fermented 
with koji). Food manufactured using fungi as the sac-
charifier is found in countries in the east and south-
east regions of Asia, such as Korean makgeolli, Chinese 
huangjiu, and Indonesian tempe. Since the Japanese 
traditional dietary fungus A. oryzae has been bred and 
maintained as a safe and non-mycotoxin-producing fun-
gus (Machida et  al. 2005) and used in the food culture 
in Japan (Murakami 1985) for centuries, the US Food 
and Drug Administration (FDA) recognizes koji as gen-
erally regarded as safe (GRAS) and the Brewing Society 
of Japan lists the koji-producing fungi, A. oryzae and A. 
luchuensis, as the “national fungi” of Japan. However, 
few studies report the functionalities of eating koji. One 
possible explanation is the fact that Aspergillus mycelia 
contain β-glucan (Ishibashi et al. 2004), which activates 
macrophages through Dectin-1 (Brown and Gordon 
2001) and improves glycaemic index (Jenkins et al. 2002) 
and serum cholesterol (Wang et al. 2016). However, the 
nutritional benefit of eating koji or A. oryzae has not 
been studied.

In earlier studies, we have elucidated that koji con-
tains abundant glycosylceramide (0.5–3 mg/g dry weight) 
(Hirata et  al. 2012; Takahashi et  al. 2014; Sawada et  al. 
2015), which is one of the highest amounts found in any 
cuisine. Glycosylceramide is composed of a sugar moiety, 
fatty acid moiety, and sphingoid base moiety, and is cat-
egorized as a sphingolipid. Sphingolipids are critical com-
ponents of the cell membrane and exert various biological 
functions (Truman et al. 2014; Russo et al. 2013). Koji gly-
cosylceramide consists of N-2′-hydroxyoctadecanoyl-l-O-
β-d-glucopyranosyl-9-methyl-4,8-sphingadienine (69.7 %) 
and N-2′-hydroxyoctadecanoyl-l-O-β-d-galactopyranosyl-
9-methyl-4,8-sphingadienine (30.3  %) (Hamajima et  al. 
2016). These chemical structures differ from those in other 
species and the Japanese have consumed koji glycosylcera-
mide for centuries, with current consumption being 25.7–
77.1 mg glycosylceramide per day (Yunoki et al. 2008). Koji 
glycosylceramide might exert unique effects that could 
contribute to the health benefits of Japanese cuisine.

Intestinal microbial flora has a great impact on 
health (Fukuda et  al. 2011; Sommer and Bäckhed 2013; 
Kanauchi et  al. 2013), and many diseases are reported 
to be related to intestinal microbial flora (Round and 
Mazmanian 2009; Hold 2016; Benakis et  al. 2016; Del 
Chierico et  al. 2016). Interestingly, great variations in 
intestinal microbial flora among several ethnic groups 
are observed (De Filippo et al. 2010; Moeller et al. 2014; 
Nakayama et al. 2015). Thus, food content is considered 
to affect the intestinal microbial flora, which might pro-
vide a new therapeutic strategy for diseases. However, 

the relationship between Japanese food and intestinal 
microbial flora remains unknown.

In this study, we hypothesized that koji glycosylcera-
mide alters the intestinal microbial flora. Specifically, that 
koji glycosylceramide increases the content of several 
microbes, including Blautia coccoides. Since B. coccoides 
is reported to have several health benefits, an increase of 
B. coccoides through the intake of koji glycosylceramide 
might be one mechanism explaining Japanese longevity. 
This knowledge can be utilized to improve the nutritional 
content of foods of other nations and increase life expec-
tancy around the world.

Methods
Materials
Pre-gelatinized dried koji (rice polishing ratio 70 % w/w 
fermented with A. oryzae) was purchased from Tokush-
ima Seikiku Co., Ltd (Tokushima, Japan).

Bacterial strains
Blautia coccoides (ATCC® 29236; ATCC, VA, USA), 
Escherichia coli (New England Biolabs, MA, USA) and 
Lactobacillus casei (Saga University) were used in this 
study.

Lipid extraction and purification
Lipid extraction from koji was performed as described 
earlier (Hirata et al. 2012; Takahashi et al. 2014). The lipid 
was extracted from 1.8  kg koji by chloroform–methanol 
(2:1, v/v) at a concentration of 100 mg/mL. The extracted 
lipid solution (10  mL) was dried by evaporator, and the 
dried lipids were dissolved in 5  mL of chloroform. This 
chloroform solution was incubated at 4 °C for 1 h and the 
precipitate was filtered and removed. The solution was 
evaporated and dissolved in chloroform–methanol (2:1, 
v/v) at a concentration of 100 mg/mL. The precipitate was 
dissolved in chloroform–methanol (2:1, v/v) as above. The 
solution (5  mL) was dried by evaporator and dissolved 
in 5 mL of acetone. This acetone solution was incubated 
on ice for 1  h and the precipitate and supernatant were 
separated by centrifugation. The precipitate was washed 
with cold acetone twice. The recovered supernatant and 
the washed acetone fraction were dried by evaporator. 
The dried sample was dissolved in chloroform–methanol 
(2:1, v/v) at a concentration of 100 mg/mL and used as the 
purified koji glycosylceramide in further analyses.

Animals and diets
All aspects of the experiments were conducted accord-
ing to the guidelines provided by the ethical committee 
for experimental animal care at Saga University. Five-
week-old male C57BL/6N mice were purchased from 
Kyudo Co., Ltd. (Saga, Japan). The mice were individually 
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housed in plastic cages in a temperature-controlled room 
(24 °C) under a 12 h light/dark cycle. The basal semisyn-
thetic diets were prepared according to the recommen-
dations of the AIN-76 (Shirouchi et  al. 2007) (Table  1). 
Koji glycosylceramide was extracted and purified as 
above, and the general components of the samples were 
routinely determined according to official AOAC meth-
ods. The mice were assigned to two groups (three mice 
each) that were fed one of two diets (Table 1), a semisyn-
thetic AIN-76 diet (Control group) or a semisynthetic 
AIN-76 diet supplemented with 1 % purified koji glyco-
sylceramide. The mice received the diets ad libitum using 
Rodent CAFE (KBT Oriental Co., Ltd., Saga, Japan) for 
1 week. At the end of the feeding period, the mice were 
sacrificed by exsanguination from the heart under iso-
flurane anaesthesia following a 9  h starvation period. 
Kidneys, adrenal glands, perirenal white adipose tissue, 
spleens, appendix, brains, and livers were excised imme-
diately, and the serum was separated from the blood.

Analysis of hepatic lipids and serum parameters
Liver lipids were extracted according to the method of 
Folch et  al. (1957), and the concentrations of triglycer-
ides, cholesterols, and phospholipids were measured 
using the methods of Fletcher (1968), Sperry and Webb 
(1950), and Rouser et al. (1966), respectively. The triacyl-
glycerol, cholesterol, phospholipid, and glucose levels in 
the serum were measured using enzyme assay kits from 
Wako Pure Chemicals (Tokyo, Japan).

Analysis of intestinal microbial flora
Faecal samples were freeze-dried for 3 days, and genomic 
DNA was extracted from the faecal samples using the 
bead-beating method as described previously (Matsuki 
et al. 2004). The region containing the 16S rRNA V3–V4 
variable region was amplified by PCR according to the 

Illumina protocol (Illumina Inc. 2013), and the sequences 
were analyzed using Miseq (Illumina, Inc., CA, USA). 
The Miseq Reporter 16S metagenomics system was used 
to obtain the information on the bacterial composition. 
The microbial cluster tree was categorized using the 
NCBI taxonomy browser (MD, USA).

In vitro analysis of the effect of koji glycosylceramide 
on microbial growth
Blautia coccoides was inoculated in yeast-peptone-
dextrose (Becton, Dickinson and Company, NJ, USA) 
medium containing sodium cholate (0.0015 % v/v) and 
glucosylceramide (4 μg/μL in ethanol) or vector etha-
nol (1 % v/v) at a cell density of 1 × 106 cells/mL. The 
bacterial cells were incubated in anaerobic jars (Anaer-
oPack Kenki, Mitsubishi Gas Chemical Co., Inc., 
Tokyo, Japan) at 30 °C for 24 h. Cultures were homog-
enized and the OD600 was measured using a spec-
trophotometer (UV-1800; Shimadzu, Kyoto, Japan). 
To incubate Lactobacillus casei, MRS medium (Bec-
ton, Dickinson and Company) was used; to incubate 
Escherichia coli, Luria-Bertani (LB) medium (Nissui, 
Tokyo, Japan) was used.

Preparation of intestinal extracts
Fresh mouse small intestine was thoroughly washed with 
washing buffer (50 mM Tris-HCl buffer pH 7.5, 150 mM 
NaCl). The small intestine was cut into small pieces and 
collected in a clean plastic tube. The collected fragments 
of small intestine were homogenized with the Polytron 
10/35 (Kinematica Inc., Luzern, Switzerland) in homog-
enization buffer (50 mM Tris-HCl buffer pH 7.5, 150 mM 
NaCl, protease inhibitor cocktail set V, and 1  mM phe-
nylmethylsulfonyl fluoride; Wako Pure Chemicals, Tokyo, 
Japan). The homogenate was centrifuged at 500×g for 
5 min to remove debris. The protein concentration of the 
supernatant was determined using a DC protein assay 
(Bio-rad Laboratories, Inc., CA, USA).

Activity assay of intestinal enzymes
The purified koji glycosylceramide (0.5 or 1.0  mg) was 
dissolved in reaction buffer (50  mM Tris-HCl buffer 
pH 7.5, 0.5  % w/v Triton X-100). Intestinal extract cor-
responding to 2  mg protein diluted twofold with pure 
water was added to the solution. The reaction solution 
was incubated at 37 °C for 18 h or 30 h. The reaction was 
stopped by boiling for 5 min, and then the solution was 
freeze-dried. The samples were dissolved in chloroform–
methanol (2:1, v/v) and applied to TLC analysis. TLC was 
developed with chloroform–methanol–acetic acid–water 
(20:3.5:2.3:0.7, v/v). Detection was performed with 2 mg/
mL orcinol in 70  % H2SO4 reagent. Ceramidase activity 
was measured using C12-NBD-ceramide (Avanti Polar 

Table 1  Composition of experimental diets

Nor = control and Kgc = koji-supplemented diet
a  AIN-76

Nor Kgc

Casein 20.0 20.0

Corn starch 15.0 15.0

Cellulose 5.0 5.0

Mineral mixturea 3.5 3.5

Vitamin mixturea 1.0 1.0

dl-Methionine 0.3 0.3

Choline bitartrate 0.2 0.2

Corn oil 7.0 7.0

Purified koji glycosylceramide – 1.0

Sucrose 48.0 47.0
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Lipids, Inc., AL, USA) as the substrate (Mitsutake et  al. 
2001). C12-NBD-ceramide (1  nmol) was incubated at 
37 °C for 18 h with 0.5 mg of the intestine extract. Chlo-
roform–methanol (2:1, v/v) was added to the reaction 
mixture, the lower phase was collected and applied to 
a TLC analysis plate and developed with chloroform–
methanol–25 % ammonia (90:20:0.5, v/v) and visualized 
by fluorescence.

Results
Extraction and purification of koji glycosylceramide
First, glycosylceramide was extracted and purified from 
1.8  kg koji. Lipids were extracted with chloroform–
methanol, and ester-linked lipids were degraded by mild 
alkaline treatment. Glycosylceramide was further puri-
fied with chloroform–acetone fractionation (Fig.  1a, b). 
Table  2 shows the result of purification of glycosylcera-
mide from 1.0  g koji. Finally, 2.8  g of koji glycosylcera-
mide was purified as a major band containing two minor 
bands (Fig. 1b).

Feeding of koji glycosylceramide
Purified koji glycosylceramide was fed to mice for 1 week 
(Table 2). Although the changes were not statistically sig-
nificant (p > 0.05), the levels of serum and liver triglycerides 

increased while those of serum glucose and liver choles-
terol decreased (Table 3). Additionally, the relative weight 
of the adrenal gland increased while the relative weight 
of the perirenal white adipose tissue decreased (Table  4). 
These results suggest that fed glycosylceramide was metab-
olized to triglyceride in the intestine and appears to play a 
role in decreasing serum glucose levels while increasing the 
relative weight of the adrenal gland. The precise meaning of 
these changes awaits further analysis.

Metabolic fate of koji glycosylceramide during passage 
through the intestine
A previous study indicated that 40.8–45.8  % of the fed 
3H-labelled sphingosine portion of glycosylceramide 
purified from beef brain is recovered in faeces (Nilsson 
1969). However, since koji glycosylceramide differs from 
bovine glycosylceramide in structure, the lipid profile of 
the faeces from mice fed with koji glycosylceramide was 
analyzed in order to investigate its metabolic fate dur-
ing passage through the intestine. No clear band of gly-
cosylceramide was detected (Fig.  2a), and ceramide or 
sphingoid bases were also not detected (data not shown) 
in the faeces. Considering that koji apparently contains 
only glycosylceramide, these results suggest that ingested 
koji glycosylceramide is metabolized or absorbed in 

Fig. 1  Extraction and purification of glycosylceramide from koji. Lipids were extracted with chloroform–methanol from 1.8 kg of pregelatinized koji. 
The ester-bond containing lipids were degraded with mild alkaline treatment, and the lipid phase was extracted using Bligh and Dyer fractionation. 
The chloroform-soluble fraction was recovered (a), and the acetone-insoluble fraction was recovered (b). GlcCer indicates glycosylceramide, a and 
b indicate hydroxylated and nonhydroxylated cerebroside respectively

Table 2  Purification summary of glycosylceramide from koji

Summary of glycosylceramide purification from 1 g of koji lipid. Glycosylceramide was purified from koji by chloroform–acetone fractionation

The results are expressed as mean values ± standard deviation of three independent experiments

Koji lipid Chloroform Acetone

Soluble fraction Insoluble fraction Insoluble fraction Soluble fraction

Weight of total recovery 0.39 g ± 0.01 0.59 g ± 0.01 0.25 g ± 0.04 0.24 g ± 0.06

Weight of glycosylceramide 24.49 mg ± 2.49 0.17 mg ± 0.02 22.24 mg ± 0.84 17.80 mg ± 1.63 3.64 mg ± 2.36

Purification rate of glycosylceramide 2.46 % ± 0.21 0.04 % ± 0.00 3.79 % ± 0.18 7.28 % ± 0.59 1.41 % ± 0.56
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the intestine either by intestinal enzymes or intestinal 
microbes.

Koji glycosylceramide is not degraded by intestinal extract
The above results inspired us to hypothesize that koji gly-
cosylceramide is digested in the upper intestine by intes-
tinal enzymes. To prove this hypothesis, intestines were 
recovered from mice, homogenized, and incubated with 
koji glycosylceramide. Lipid profiles of koji glycosylcera-
mide treated with the intestinal extract and untreated 
koji glycosylceramide were not significantly different 
(Fig.  2b). On the contrary, the intestinal enzymes had 
the ability to digest NBD-C12-ceramide (Fig.  2c). These 
results indicate that intestinal enzymes have the ability 
to degrade ceramide but not koji glycosylceramide; thus, 

koji glycosylceramide reaches the lower intestine where it 
is then metabolized by intestinal microbial flora.

Identification of Blautia coccoides as the intestinal 
microbe that increases in number upon ingestion of koji 
glycosylceramide
The results above suggested that koji glycosylceramide 
reaches the lower intestine and affects intestinal micro-
bial flora. Therefore, in order to analyze the intestinal 
microbial flora, genomic DNA was extracted from the 
faeces of koji glycosylceramide-fed or non-fed mice. It 
turned out that B. coccoides, Dorea, Clostridium alka-
licellulosi, Hathewaya histolytica, Bacteroides sartorii, 
Dysgonomonas, Dysgonomonas wimpennyi, Alphapro-
teobacteria, Chromatiales, and Chloroflexi significantly 
increased in response to the addition of koji glycosylcera-
mide (p < 0.05, Fig. 3a). B. coccoides is a strict anaerobe, 
which is often found in the mammalian intestine (Park 
et al. 2013).

In vitro stimulation of the growth of Blautia coccoides 
by koji glycosylceramide
The above feeding experiments were based on glycosyl-
ceramide purified from koji. However, the purification 
of glycosylceramide was not complete (Fig.  1b), thus it 
was not clear if pure glycosylceramide would stimulate 
the growth of these bacteria. However, preparation of 
2.8  g of pure koji glycosylceramide was difficult. There-
fore, investigation of stimulation of bacterial growth by 
koji glycosylceramide was conducted in  vitro. Since B. 
coccoides is attracting greater attention because of its 
effects on health, we focused on B. coccoides. Bacteria 
were incubated with purified glycosylceramide and the 
growth was monitored. Consistent with our hypothesis, 
the growth of B. coccoides was stimulated with either 
koji glycosylceramide (Fig.  4a) or soy glucosylceramide 
(Fig. 4b). On the contrary, glycosylceramide did not affect 
the growth of general intestinal microbes such as Escheri-
chia coli (Fig.  4c) or Lactobacillus casei (Fig.  4d). These 
results support our hypothesis that koji glycosylceramide 
specifically stimulates the growth of B. coccoides in the 
intestine.

Discussion
Although the Japanese people have eaten Japanese cui-
sine on a national level for centuries and presently have 
one of the longest healthy life spans in the world, the rela-
tionship between Japanese cuisine and Japanese longevity 
has remained obscure. In this study, we elucidate that koji 
glycosylceramide modulates intestinal microbial flora, 
specifically by increasing B. coccoides. This mechanism 

Table 3  Effect of  koji glycosylceramide on  serum 
and hepatic parameters in mice

“Nor” = control and “Kgc” = koji-supplemented diet

Nor Kgc

Serum

 Cholesterol (mg/dL) 101 ± 2 96.0 ± 1.4

 Triglyceride (mg/dL) 67.6 ± 0.7 104 ± 14

 Phospholipid (mg/dL) 207 ± 1 213 ± 7

 Glucose (mg/dL) 248 ± 2 224 ± 7

Liver

 Cholesterol (mg/g liver) 3.03 ± 0.05 2.60 ± 0.16

 Triglyceride (mg/g liver) 23.6 ± 5.0 26.3 ± 4.5

 Phospholipid (mg/g liver) 33.4 ± 5.1 30.0 ± 1.1

Table 4  Effects of koji glycosylceramide on growth param-
eters in mice

B.W.: Body Weight

“Nor” = control and “Kgc” = koji-supplemented diet

Nor Kgc

Initial body weight (g) 18.9 ± 0.6 18.9 ± 0.5

Final body weight (g) 20.0 ± 0.7 19.8 ± 0.3

Body weight gain (g) 1.13 ± 0.16 0.900 ± 0.208

Food intake (g) 19.2 ± 1.0 20.4 ± 1.1

Food efficiency (g) 0.0603 ± 0.0122 0.0441 ± 0.0098

Liver (g/100 g B.W.) 5.78 ± 0.08 6.44 ± 0.18

Kidney (g/100 g B.W.) 1.33 ± 0.05 1.38 ± 0.01

Adrenal gland (g/100 g B.W.) 0.0216 ± 0.0009 0.0352 ± 0.0101

Perirenal white adipose tissue 
(g/100 g B.W.)

0.605 ± 0.052 0.424 ± 0.058

Spleen (g/100 g B.W.) 0.277 ± 0.021 0.289 ± 0.014

Appendix (g/100 g B.W.) 0.977 ± 0.063 1.14 ± 0.05

Brain (g/100 g B.W.) 2.01 ± 0.12 2.06 ± 0.08
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might be a new connection between Japanese cuisine and 
Japanese longevity.

Blautia coccoides is one of the major intestinal microbes 
often found in human faecal samples (Park et al. 2013). It 
is a strict anaerobe and gram-positive bacteria recently 
reclassified from Clostridium (Liu et al. 2008). There are 
growing reports of the relationship between decreased 
levels of B. coccoides and disease, such as cirrhosis and 
hepatic encephalopathy (Bajaj et al. 2012), colorectal can-
cer (Chen et al. 2012), intestinal inflammation (Jenq et al. 
2012), breast cancer (Mabrok et  al. 2012), type I diabe-
tes (Murri et al. 2013), irritable bowel syndrome (Rajilić-
Stojanović et  al. 2011), acute diarrhoea, and idiopathic 
inflammatory bowel disease (Suchodolski et  al. 2012). 
Furthermore, several reports suggest that increasing the 
ratio of B. coccoides in the intestine might be beneficial 
for health. Indeed, diets high in resistant starch and ara-
binoxylan increase the ratio of B. coccoides in the intes-
tinal microbial flora (Nielsen et al. 2014), as do omega 3 
fatty acids (Myles et  al. 2014). In addition, B. coccoides 
decreases the NF-κB activity in Caco-2 cells (Lakhdari 
et  al. 2011; Jenkins et  al. 2002). B. coccoides does not 

evoke an inflammatory response in mononuclear cells 
(Tuovinen et  al. 2013). Therefore, there is evidence that 
intestinal B. coccoides contributes to health.

The modification of intestinal B. coccoides by Japanese 
cuisine and its effect on health is of significant concern. 
Several studies point out that changes in the intestinal 
population levels of the genus Blautia are dependent 
on the diet, age or nationality. Indeed, the genus Blau-
tia was most frequently found in the faeces of Japanese 
people (Nishijima et al. 2016) relative to other nations in 
the world, supporting the hypothesis that Japanese cui-
sine containing koji increases B. coccoides in the intes-
tine. Intestinal population levels of Blautia in children 
with type I diabetes are significantly higher than those 
in healthy children (Murri et  al. 2013). In addition, the 
population level of Blautia is decreased in the intes-
tines of cirrhotic patients (Kakiyama et al. 2013), as well 
as in elderly people relative to young people (Kurakawa 
et  al. 2015). Together with the knowledge attained in 
this study, it is likely that Japanese people have increased 
levels of intestinal B. coccoides through consumption of 
koji glycosylceramide contained in the Japanese cuisine, 

Fig. 2  Metabolic fate of koji glycosylceramide in the intestine. a Total lipid profile of feces from mice fed with or without koji glycosylceramide. Nor 
indicates the feces of non-added mice and Kgc indicates those of koji glycosylceramide-fed mice. The number indicates the replicate number of 
experiments. b Total lipid profile of koji glycosylceramide incubated with intestinal extracts. c NBD-TLC of C12-ceramide incubated with intesti-
nal extracts. Intestinal extract was recovered from mice, mixed with purified koji glycosylceramide or NBD-C12-ceramide, incubated at 37 °C for 
16–30 h, developed, and visualized by orcinol–H2SO4 reagent or fluorescence. SG indicates Sterylglucoside and GlcCer indicates glycosylceramide, a 
and b indicate hydroxylated and nonhydroxylated cerebroside respectively
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contributing to the health status of the Japanese peo-
ple (Symolon et  al. 2004; Fujiwara et  al. 2011; Yazama 
et  al. 2015). This hypothesis needs further study and 
verification.

The practical effect of koji glycosylceramide in the daily 
intake of Japanese traditional cuisine can be inferred 
from this study. In this study, mice (19.8  g weight) ate 
20.4  g per week, which corresponds to 0.147–0.294  (g/

Fig. 3  Analysis of intestinal microbial flora of mice fed with koji glycosylceramide. a Cluster tree of microbes increased or decreased in the feces 
of mice fed with koji glycosylceramide. The underline indicates microbes whose read values were significantly increased (p < 0.05). The broken 
underline indicates microbes whose percentage values were significantly increased (p < 0.05). The square indicates microbes whose read values and 
percentage values were significantly increased. Stars indicate microbes which were larger in Kgc than in Nor. b Box plot representing the relative 
abundance of the genera (Blautia coccoides) enriched in the feces of koji glycosylceramide-fed mice. Mice were fed with koji glycosylceramide for 
1 week. The feces were recovered, and freeze-dried. Genomic DNA was extracted and purified from the feces. The V3–V4 variable region of 16S rRNA 
was amplified using PCR and sequenced using Miseq, Illumina. Data were analyzed by MiSeq Reported 16S metagenomics system. p value indicates 
one-tailed unpaired Student’s t-test under symmetry conditions (n = 3)
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day)/(g body weight). Since koji glycosylceramide was 
present in the feed at 0.2–1 % w/w, this corresponds to 
0.71–1.43  g/day for a 60  kg human [human equivalent 
doses (Reagan-Shaw et  al. 2008)]. Considering that Jap-
anese people eat 5–100 g koji per day and koji contains 
0.5–3  mg/g glycosylceramide, Japanese people intake 
0.0025–0.3  g koji glycosylceramide per day. Therefore, 
the doses used in this study can be considered sufficiently 
effective in humans.

Previous studies provide sufficient evidence that die-
tary glycosylceramide is digested and absorbed in the 
intestine (Nilsson 1969; Schmelz et al. 1994). Therefore, 
since intestinal enzymes cannot degrade glycosylcera-
mide (Fig. 2b), intestinal microbes are considered to have 
the ability to degrade glycosylceramide to ceramide. Con-
sistent with this hypothesis, intestinal Blautia glucera-
sei was shown to degrade glucosylceramide to ceramide 
(Furuya et  al. 2010). From these facts, it appears that 
these microbes degrade koji glycosylceramide to cera-
mide, and the resulting sugar moiety and ceramide are 
metabolized to fatty acids and sphingoid bases, which are 
then absorbed in the intestine (Nilsson 1969). This is a 
significant target of the next study.

Several studies reported that dietary soy or rice bran 
glucosylceramide reduces cancers such as colon cancer 
and head and neck cancer (Symolon et  al. 2004; Fuji-
wara et al. 2011; Yazama et al. 2015). In addition, plant-
origin glucosylceramide suppresses bowel inflammation 

(Arai et al. 2015). Furthermore, dietary glucosylceramide 
improves skin function (Kawada et al. 2013; Duan et al. 
2012; Tsuji et al. 2006; Miyanishi et al. 2005). Alteration 
of intestinal microbiota, as found in this study, might be 
the cause of these observed phenomena.

Conclusion
In conclusion, we have elucidated that the Japanese die-
tary fungus koji A. oryzae functions as a prebiotic, since 
glycosylceramide contained in koji (rice fermented with 
Aspergillus oryzae) increases B. coccoides in the intestine. 
This knowledge might be a novel link between Japanese 
cuisine and Japanese longevity.
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